References

Juchnovski, I. \& Kolev, Ts. (1985). Spectrosc. Lett. 18, 481-490.
Kolev, Ts. (1982). PhD thesis. Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Murray, R. W. \& Trozzolo, A. (1961). J. Org. Chem. 26, 3109-3112.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet $R 3 \mathrm{~m} / V$ crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Svaan, M. \& Parker, V. (1984). Acta Chem. Scand. Ser. B, 38, 767-771.
Svaan, M. \& Parker, V. (1988). Acta Chem. Scand. Ser. B, 42, 93-100.
Williams, D. E. (1984). PCK83. Crystal and molecular packing analysis program. Univ. of Louisville, USA. QCPE Program No. 481, Department. of Chemistry, Indiana Univ., USA.

Acta Cryst. (1992). C48, 1717-1718

Structure of 1,4,7,10-Tetraazacyclododecane Trihydrate

Joseph H. Reibenspies

Department of Chemistry, Texas A\&M University, College Station, Texas 77845, USA
(Received 27 April 1992; accepted 23 June 1992)

Abstract

The neutral 1,4,7,10-tetraazacyclododecane molecules exhibit crystallographic twofold rotation symmetry and have a [3333] quadrangular conformation with C atoms occupying corner positions. The H atoms bound to the N atoms at the 1 and 7 ring positions are directed outward, away from the center of the ring, while the H atoms bound to the N atoms at the 4 and 10 ring positions are pointed inward, toward the center of the ring. Each N atom is hydrogen bonded to one water molecule. The quadrangular conformation is important in the preorganization of $1,4,7,10-$ tetraazacyclododecane and its derivatives prior to complexation to metal ions $\left[(C-C)_{\text {ave }}=1.518(7),(\mathrm{C}-\mathrm{N})_{\text {ave }}\right.$ $=1.464(3) \AA$].

\section*{Comment}

The structure of the title compound, also known as cyclen, was determined to establish the conformation of the twelve-membered cyclododecane ring. Fig. 1 shows the structure and the numbering scheme used. The ring conformation is important in understanding the effect of preorganization on complex stability and selectivity for metal ions (Hancock \& Martell, 1989; Weber \& Vogtle, 1981;

Fig. 1. Thermal ellipsoid plot (50% probability) of cyclen. $3 \mathrm{H}_{2} \mathrm{O} ; \mathrm{H}$ atoms are shown as spheres of arbitrary radius.

Cram \& Trueblood, 1981). Previous work (Reibenspies \& Anderson, 1990) has shown that the twelve-membered ring of the protonated H_{4} cyclen ${ }^{4+}$ cation folds to form four repeating units, each containing two adjacent bonds with gauche configuration and one bond with anti configuration. The resulting combination of configurations is labeled the [3333] quadrangular conformation (Dale, 1980). The present study shows that the neutral cyclen molecule also prefers the [3333] quadrangular conformation in the crystalline state. The two similar structures $\left(\mathrm{H}_{4} \mathrm{cyclen}^{4+}\right.$ and cyclen) differ in the position of the N atoms in the ring with respect to the side and corners of the conformation. For the protonated cyclen cation, the N atoms are located at the corners of the square while for the neutral cyclen molecule the N atoms are located along the sides. As expected, the average $\mathrm{C}-\mathrm{N}$ distance is significantly shorter for the neutral cyclen molecule [1.464(3) Å] than for the protonated cyclen cation [1.497(3) \AA]. The average $\mathrm{C}-\mathrm{C}$ distances in the cyclen cation and the neutral cyclen molecule [1.527(7) and 1.518 (7) \AA respectively] do not differ significantly. Three molecules of water are located at special positions. Two water molecules [O(2) and $\mathrm{O}(3)$] are hydrogen bonded to the N atoms of the cyclen molecule $[\mathrm{N}(1)-\mathrm{O}(2) 3.186(3), \mathrm{N}(2)-\mathrm{O}(3) 2.835(2) \AA]$ and the third water molecule, $\mathrm{O}(1)$, is hydrogen bonded to other water molecules $[\mathrm{O}(1)-\mathrm{O}(2) 2.998(3), \mathrm{O}(1)-\mathrm{O}(3)$ 2.894(2) Å].

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{4} .3 \mathrm{H}_{2} \mathrm{O}$	Mo $\mathrm{K} \alpha$ radiation
$M_{r}=226.3$	$\lambda=0.7103 \AA \AA$
OOthorhombic	Cell parameters from 25
$C c c a$	reflections
$a=16.636(4) \AA$	$\theta=9.19-27.53^{\circ}$
$b=16.873(3) \AA$	$\mu=0.086 \mathrm{~mm}^{-1}$
$c=8.881(2) \AA$	$T=296 \mathrm{~K}$

$V=2492.9(8) \AA^{3}$
$Z=8$
$D_{x}=1.206 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $R 3 m / V$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
1273 measured reflections
1270 independent reflections
814 observed reflections [$F>2.5 \sigma(F)]$

Refinement

Refinement on F
Final $R=0.0520$
$w R=0.0586$
$S=1.452$
814 reflections
71 parameters
Calculated weights,

$$
w=1 /\left[\sigma^{2}(F)+0.0005 F^{2}\right]
$$

$(\Delta / \sigma)_{\text {max }}=0.0021$
$\Delta \rho_{\max }=0.24 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{\AA^{-3}}$

Parallelepiped

$0.26 \times 0.24 \times 0.19 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 19$
$k=0 \rightarrow 20$
$l=-10 \rightarrow 0$
3 standard reflections frequency: 97 min intensity variation: 5\%

Extinction correction: Larson (1967)

Extinction coefficient: 0.0004 (2)

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Data collection: Siemens P3VAX version 3.4. Data reduction: REFRED (Reibenspies, 1992). Program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1990). Program(s) used to refine structure: SHELXTL-Plus. Software used to prepare material for publication: SHELXTL-Plus.

The title compound was obtained from the Aldrich Chemical Co. and recrystallized from water. A suitable crystal was chosen and mounted on a glass fiber with epoxy cement at room temperature. Inspection of axial photographs about each of the three axes confirmed axis length and Laue symmetry. ω scans of several intense reflections indicated acceptable crystal quality.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$U_{\mathrm{eq}}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
O(1)	0.5000	0.2500	-0.0269 (3)	0.049 (1)
O(2)	0.5000	0.1484 (2)	0.2500	0.058 (1)
O(3)	0.1268 (1)	0.2500	0.2500	0.041 (1)
N(1)	0.3702 (1)	0.0230 (1)	0.1368 (2)	0.036 (1)
N(2)	0.2220 (1)	0.1240 (1)	0.1367 (2)	0.034 (1)
C(1)	0.3335 (2)	-0.1024 (2)	0.0152 (3)	0.036 (1)
C(2)	0.4010 (2)	-0.0513 (2)	0.0753 (3)	0.039 (1)
C(3)	0.3534 (2)	0.0826 (2)	0.0211 (3)	0.038 (1)
C(4)	0.3014 (2)	0.1491 (2)	0.0840 (3)	0.038 (1)

Table 2. Geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{C}(2)$	1.460 (3)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.513 (4)
$\mathrm{N}(1)-\mathrm{C}(3)$	1.465 (3)	C(3)-C(4)	1.523 (4)
$\mathrm{N}(2)-\mathrm{C}(4)$	1.464 (3)	$\mathrm{C}(1)-\mathrm{N}(2)^{\text {i }}$	1.466 (3)
$\mathrm{N}(2)-\mathrm{C}(1)^{\text {i }}$	1.466 (3)		
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	113.2 (2)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	111.1 (2)
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(1)^{\text {i }}$	113.9 (2)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	110.9 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(2){ }^{\text {i }}$	110.5 (2)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	114.7 (2)
Symmetry codes: (i) $\frac{1}{2}-x,-y, z$.			

0108-2701/92/091718-03\$06.00

The 2θ scan width was $2.0^{\circ}+K \alpha$ separation, with a variable θ scan rate of $1.5-14.6^{\circ} \mathrm{min}^{-1}$. Background measurements were made by stationary crystal and stationary counter techniques at the beginning and end of each reflection for half the total scan time. Intensities were corrected by a peak-profiling method (Diamond, 1969). Carbon-bound H atoms were placed in idealized positions [$\mathrm{C}-\mathrm{H}=0.96 \AA, U(\mathrm{H})=0.08 \AA^{2}$ (fixed)]. Nitrogen-bound and oxygen-bound H atoms were located in a difference Fourier map. The nitrogen-bound H atoms were set to an idealized bond distance $[\mathrm{N}-\mathrm{H}=0.90 \AA, U(\mathrm{H})=$ $0.08 \AA^{2}$ (fixed)]; the distances of the oxygen-bound H atoms were not modified $\left[U(H)=0.08 \AA^{2}\right.$ (fixed)]. The H-atom parameters were not refined.

The X-ray diffraction and crystallographic computing system was purchased from funds provided by the National Science Foundation (USA), grant CHE-8513273.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55237 (8 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST1013]

References

Cram, D. J. \& Trueblood, K. N. (1981). Top. Curr. Chem. 98, 43-106. Dale, J. (1980). Isr. J. Chem. 20, 3-11.
Diamond, R. (1969). Acta Cryst. A25, 43-55.
Hancock, R. D. \& Martell, A. E. (1989). Chem. Rev. 89, 1875-1914.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Reibenspies J. H. (1992). REFRED. Program for data reduction for Siemens $R 3 \mathrm{~m} / V$ diffractometer. Texas A\&M Univ., College Station, Texas, USA.
Reibenspies, J. H. \& Anderson, O. P. (1990). Acta Cryst. C46, 163-165.
Sheldrick, G. M. (1990). SHELXTL-Plus. Revision 4.11V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Weber, E. \& Vogtle, F. (1981). Top. Curr. Chem. 98, 1-41.

Acta Cryst. (1992). C48, 1718-1720

1-Benzenesulfonyl-3-methyl-2-oxo-2,3-dihydroindol-3-yl Acetate

David A. Grossie and Daniel M. Ketcha

Department of Chemistry, Wright State University, Dayton, Ohio 45435, USA
(Received 15 April 1992; accepted 12 June 1992)

Abstract

The title compound was synthesized via a novel oxidation employing manganese(III) acetate. All bond distances and angles are similar to those found in previously reported oxindole-ring systems. In the title compound,

